Component-Based QoS-Driven Synthesis of High Assurance Embedded Software, Phase I

Completed Technology Project (2005 - 2006)

Project Introduction

Software is an integral part of many complex embedded systems, such as avionics, scientific exploration, and on-board systems. However, poor software reliability is a major impediment to the success of these mission-critical systems. Testing, formal verification, and code synthesis techniques have been proposed to achieve more reliable software, with automated code synthesis being the most promising method. But synthesizing a complex system from scratch is costly. A more practical approach is to synthesize systems from existing components, i.e., component-based system synthesis (CBSS). Existing research in CBSS focuses on synthesizing systems bottomup, which has severe limitations. We propose to achieve CBSS by combining the top-down and bottom-up approaches. Specifically, we develop techniques to achieve automated system decomposition and semi-automated system architecture synthesis. The IDEAL decomposition technique decomposes a system into ``IDEAL" units that are mathematically composable and can be developed and evolved independently. Consequently, the technique assures system reliability and enables on-the-fly feature/technology upgrades. The QoS-based architecture synthesis technique seeks to assure system QoS properties by synthesizing an architecture that optimizes QoS objectives. It also facilitates on-board system adaptation due to resource and power constraints. Combined with bottom-up techniques, such as Amphion and pattern-based code synthesis, a dramatic leap in automated CBSS capability can be achieved. The proposed research will lead to sophisticated automation for synthesizing highly reliable, multi-mission capable avionics and exploration systems.

Primary U.S. Work Locations and Key Partners

Component-Based QoS-Driven Synthesis of High Assurance Embedded Software, Phase I

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility		
Project Management		
Technology Areas		

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Ames Research Center (ARC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Component-Based QoS-Driven Synthesis of High Assurance Embedded Software, Phase I

Completed Technology Project (2005 - 2006)

Organizations Performing Work	Role	Туре	Location
Ames Research Center(ARC)	Lead Organization	NASA Center	Moffett Field, California
IA Tech, Inc.	Supporting Organization	Industry	Los Angeles, California

Primary U.S. Work Locations

California

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigators:

John R Cumbers Ann Tai

Technology Areas

Primary:

- TX11 Software, Modeling, Simulation, and Information Processing
 - □ TX11.1 Software
 Development,
 Engineering, and Integrity
 □ TX11.1.7 Frameworks,
 Languages, Tools, and
 Standards

